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Abstract

Models of neural architecture and organization
are critical for many tasks in neuroscience. How-
ever, building these models in an automated, data-
driven manner within and across varied brain re-
gions still remains a challenge. In this work, we
leverage the power of deep learning to build a rich
model of neural microarchitecture across multiple,
diversified brain areas. We then use low-rank ma-
trix factorization to project the model’s features
onto an interpretable, lower-dimensional space.
Our results show that the subsequent embeddings
possess biologically meaningful structure which
makes them useful in the study of brain structure
at multiple scales. We demonstrate the use of this
approach in the discovery of microstructural pat-
terns and motifs within brain areas, as well as in
revealing relationships between multiple hetero-
geneous brain regions.

1. Introduction

Mapping out the underlying microstructure of the brain is
essential for many tasks in neuroscience (Mazziotta et al.,
1995). For instance, in studies of disease (Rondina et al.,
2018; Pflanz et al., 2020), aging (Tian & Ma, 2017), or de-
velopment (Lebel & Deoni, 2018), a rich description of the
microstructure is a pre-requisite for being able to compare
brains across different conditions. Detailed maps of brain
structure have also led to important discoveries regarding
relationships between structure and function (Mountcastle,
1998) and provide a necessary sign post when targeting
specific brain regions for subsequent studies.

The study of brain structure and organization has tradition-
ally relied on human reasoning to define regions of interest
(ROIs) (Brodmann, 1909), where neuroanatomists typically
characterize parts of an imaged sample in terms of their
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anatomical compositions and then build a model of how the
architecture changes across different brain regions. Moving
forward however, given the ever-increasing sizes of neu-
roimaging datasets, as well as to further our knowledge of
neural structure and organization beyond what is already
understood, there is a need for automated solutions that can
discover substructures within brain areas, along with new
architectural primitives across different ROISs.

In the recent past, convolutional neural networks (CNNs)
have proven to be particularly well suited for automated
feature engineering and pattern recognition. These sys-
tems are designed to build and learn hierarchical, textural
representations that are useful for solving downstream prob-
lems, directly from raw image data (Zeiler & Fergus, 2013;
Olah et al., 2017; 2018; Lin & Maji, 2016). They have
been shown to conclusively outperform classifiers trained
on hand-crafted features, and are now routinely applied
in modeling brain structure in macroscale datasets (Bernal
et al., 2019; Lin et al., 2018). More recently, they have
also been used with high resolution neuroanatomical data to
solve problems ranging from tumor detection to pixel-level
semantic segmentation in connectomics.

Deep learning applied to image understanding in neurosci-
entific microscopy, however, has so far primarily focused on
supervised approaches for segmentation, either at the scale
of brain regions (Chen et al., 2019; Igbal et al., 2019; Tan
et al., 2020), or individual components like neurites (Funke
et al., 2018; Januszewski et al., 2018). And though these ap-
proaches are capable of learning rich features from images
to solve their respective tasks, they are trained strictly to find
specific components, thus failing to provide any tangible
ways to discover new areas or structures of interest.

In this work we introduce a deep learning-based approach
for modeling microstructure in brain imagery (Figure 1) that
can be used to automatically discover regions within a brain
sample that share similar characteristics in terms of their
local morphology or cytoarchitecture.

Our solution is ideologically similar to recently popularized
representation learning strategies (Oord et al., 2018; Chen
et al., 2020) and starts with a simple observation; If we train
a network to do well on a brain area classification task using
only local views of the brain’s structure, then the network
is forced to pay attention to the anatomical features of the
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Figure 1. Deep feature learning approach for modeling brain microarchitecture and neuroanatomical discovery. On the left, we show how
patches from different ROIs are selected from a large brain sample, and used to train a deep CNN that can classify these images in terms
of their underlying ROI. Once the network is trained, we extract activations from its last hidden layer across many test samples and embed
them into a low-dimensional space via low-rank matrix factorization. These new low-dimensional features are then used to further find

patterns and regions of interest in a large brain sample.

dataset and build rich feature assemblies (e.g., patterning
of axons, density and morphology of cells) along the way.
After training a CNN to solve this task, we then treat it
as a feature extractor (Bengio et al., 2013; Sermanet et al.,
2014; Razavian et al., 2014) and collect the activations (i.e.,
representations) of units in its last hidden layer across many
inputs. Because the network has been trained to provide
meaningful information about the diverse brain structures it
has previously seen, its representations provide useful cues
about the relationships between different brain areas, as well
as the changes or demarcations within them (e.g., layers,
barrels and barreloids in cerebral cortex).

The network’s representations are however, still rather high
dimensional, entangled, and uninterpretable. To address
these problems we project the representations onto a lower,
k-dimensional space via non-negative matrix factorization
(NMF) (Lee & Seung, 2001). NMF imposes constraints that
encourage compositional localization and disentanglement
in the transformed space, thus resulting in embeddings that
i) provide a more fine-grained lens into how different re-
gions in the sample are organized within the network, and
ii) demonstrate improved microstructural disentanglement
along their components, making them suitable as features in
unsupervised downstream tasks aimed at region discovery.

We applied our framework for microstructure discovery to a
large-scale thalamocortical sample that spans six different
brain areas (Agmon & Connors, 1991) and was imaged with
synchrotron X-ray microtomography (micro-CT) (Prasad
et al., 2020a;b). On a macrostructural scale, our framework
allowed us to identify directions in k-dimensional space
that strongly aligned with certain ROIs in the thalamocor-
tical slice, as well as some which revealed co-expression
patterns that aligned with specific neuroanatomical features

(e.g., regions with myelinated axons and little to no cells)
across the entire image slice. On a microstructural scale,
we combined our framework with a downstream clustering
task, and successfully discovered both laminar differences
and barrel fields in the cortex, without being given any prior
knowledge about these motifs.

Our findings point to the fact that deep learning-based rep-
resentations can be utilized to find finer sub-divisions and
biological features in data without explicit supervision to
do so. They speak to our framework’s potential for ap-
plication in the discovery of microarchitectural motifs in
relatively unexplored and under studied brain areas, as well
as open up possibilities for such methods to be translated
into approaches for modeling continuous variability in brain
structure and progression of neurodegenerative disease.

2. Methods

Dataset. In order to build an expressive model of local
neural microarchitecture, it was imperative that we used
image data that was structurally heterogeneous, as well as
of sufficiently high resolution. We therefore used a 3D X-
ray microtomography dataset that contains a varied set of
microarchitectural structures including cell bodies of differ-
ing morphology and density, myelinated axons, and blood
vessels, all resolved at 1.17 micron isotropic. From the raw
data we sampled 150x150 micron images from each of the
six manually annotated ROIs in the slice. Our resulting
dataset provided us with the necessary scale and resolu-
tion required to capture the micorarchitectural anatomical
differences across the brain areas of interest.

Training of the Deep Neural Network. Next, we trained
a feed-forward CNN to perform six-way brain area clas-
sification using the cross-entropy loss function. Images
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in the training set were drawn from a single slice (z=159)
while those for validation and testing were drawn from brain
slices 50 (z=209) and 100 (z=259) microns away from the
training image, respectively. We found that the trained net-
work performed well on both the validation (89.77%) and
test (88.88%) datasets in terms of accuracy, thus providing
evidence that the classifier could generalize to new images.

Extracting Network Activations. After training the net-
work to discriminate between brain areas using local views,
we then sought to use it to explore finer-scale microar-
chitectural characteristics within our data. To do so, we
froze the network’s weights and collected representations
from its last hidden layer for image patches obtained by
densely sampling across the full test slice (z=259). We then
arranged these representations into a matrix X € RIx"
where X = fp(D), D is our dataset with n samples, and
fo(+) denotes the transformation from image space to the
d-dimensional space defined by last hidden layer of the
network. In our experiments, d = 64 and n =~ 5.5M.

Decomposing Network Representations via Matrix Fac-
torization. Once we had our set of network representa-
tions X, we then needed to project the matrix onto a space
where the transformed representations were more structured
and biologically interpretable. We achieved this through
non-negative matrix factorization, a low-rank approxima-
tion technique that factorizes the matrix X into two matrices
U and V such that the residual || X — UV]||g is minimized,
subject to U,V > 0. Here, the matrix U € R*** forms
our basis that projects the d-dimensional data onto a lower
k-dimensional space, and V € R**™ is the matrix of coef-
ficients obtained for all n examples in the dataset. Each of
the columns of V explain how aligned each data sample in
X is to the different basis vectors given by the columns of
U. A salient property of NMF is that its resulting factors
exhibit an inherent spectral clustering on the columns (i.e.,
the samples) of the data matrix X and form sparse, localized
embeddings (Ding et al., 2005) that are easy to interpret.
This is a result of the non-negativity constraints that NMF
imposes on its factors, thus making the technique extremely
well suited for our task of simultaneously disentangling and
reducing the dimensionality of the representations in X.

Selecting Predictive Non-Negative Factors. Factors ob-
tained using NMF unfortunately do not have a natural or-
dering that dictates their importance in either explaining
the variance of or reconstructing the data. We therefore
developed a greedy algorithm to choose a subset of p non-
negative factors from the original set of k, such that those in
the subset shared minimal information with each other while
still being able to reconstruct as much of the entire sample
as possible. The algorithm takes as inputs the original set
of non-negative factors, number of factors p one wants to
sub-select, annotations that demarcate pre-defined regions
of interest in the sample and a tunable hyperparameter A (de-

fault = 0.5) that encourages the selection of more localized
or more uniformly distributed factors for higher and lower
values respectively. It then computes two sets of scores, i.e.,
the coverage and leakage scores, for all combinations of the
different non-negative factors and ROIs in the sample. For a
factor ¢ and ROI a whose set of points are given by the set A,
the coverage score, s, = Y, 14.1,/~¢ is the number of pos-
itive coefficients for the ROI associated with factor i. The
leakage score, sy = A Y 1 ,¢ 14750 for the same factor and
ROI is the number of positive coefficients outside the ROI
and associated with factor ¢, scaled by A. The difference
between the two gives us the total score, s; = s, — s¢. Once
the total scores for all k factors and r ROIs are calculated
and ordered into a (k, r) matrix, the algorithm iteratively
selects the factor with the highest score, given that score
belongs to neither a factor nor an ROI selected previously.

3. Experiments and Results

After training the network and constructing our matrix of
representations X, we obtained the non-negative factors and
coefficients across all ~ 5.5M samples taken together (k =
15). We then conducted two experiments, the first across all
brain areas where we studied the neuroanatomical features
that the different factors were aligned to, and the second
within the cortex, where we looked at different structural
motifs and sub-divisions within the area.

Identifying Anatomically linked Macrostructure. Us-
ing the strategy described in Section 2, we selected the
top six mutually uncorrelated factors (Figure 2C) across
the sample that aligned with the labeled brain areas in the
dataset. We found that factors 12, 7 and 14 aligned with
the cortex, striatum and ZI, respectively, while factors 11
and 5, 6 revealed co-expression patterns that aligned with
specific neuroanatomical features viz., regions with myeli-
nated axons with little to no cells for F5 and a general
thalamic distribution in F11. Examination of Factor 11’s
coefficients highlighted parts of the sample that had patchy
and diffuse axonal expression, mainly parts of VP and ZI
innervated with myelinated axons. However, unlike F5 that
highlighted WM specifically, F11 also seemed to require
a joint distribution of cells. Further studying the distribu-
tion of F11 revealed that the factor showed activity in the
thalamic regions (VP, ZI) and to some degree, the cortex.
While joint co-expression of regions in the thalamus wasn’t
particularly startling, to see the same factor highlight parts
of cortex was surprising. When we further looked into F11’s
expression in the cortex and examined the component corre-
lation across manually annotated layers, we observed that
the areas highlighted were in layers 4 and 6, both of which
do indeed exhibit diffuse expression of axons. Picking out
these regions of sparse axonal innervation by eye is not easy
and the network appeared to have identified a good solu-
tion to this problem. This analysis therefore provided us
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Figure 2. Discovery of neural structure and organization at multiple scales. In (A1) we show the manual annotations for all brain areas in
the test sample with the cortex being further divided into its different layers. (A2) shows the results from clustering the NMF factors of
samples in the cortex. Panel (B) of the figure demonstrates our results for discovery of neuroanatomical motifs at the microstructural level
in the cortex. In (B3) we zoom into the bounding box shown in (A2) and identify regions of high cellular density (i), medium cellular
density (ii), low cellular (iii), and sparse cellular density (iv) that we find after clustering the 15D NMF cortical features. (B2) shows the
four different clusters in (A2) individually and see that different factors highlight different characteristics of interest (e.g. barreloids in
B2-2). (B1) shows the cortical embeddings for the top-3 NMF factors that are selected to be uncorrelated across the layers while still
spanning most of the cortex, individually and combined in an RGB map. In panel (C) we show heatmaps obtained by visualizing the
coefficients corresponding to the top-6 predictive NMF factors selected across the entire test slice. As is clearly visible, the factors very
distinctly align with different ROISs (e.g. factors 12, 7 and 14) or specific neuroanatomical features (e.g. factors 5, 11)

with new insights into how different brain areas are micro-
architecturally related, and how patterning of axons and
cells appeared to be aligned with specific factors.

Revealing Laminar Divisions and Regions of Varying
Cell Density in Cortex. Looking at the top three NMF
factors of the cortex (Figure 2B1) revealed that they roughly
mapped onto different cortical layers. Moreover, certain di-
visions in Layers 4 and 5 were particularly pronounced, and
their patterns of architecture agreed with the descriptions of
patterning of barrels and barreloids in somatosensory cortex
(Petersen, 2007). Further analysis of the cortical factors by
fitting a Gaussian mixture model (GMM) to them (Figure
2A2) revealed that a subset of the resulting components (Fig-
ure 2B2) explained much of the cortex. Significant chunks
of layers 2/3 and 5/6 were split roughly across components
1 and 3, which primarily represented areas with moderate
cell density and no axons. We also found that parts of the
image that had high axon count in conjunction with high
cell density were consistently grouped into component 1,

both in Layer 4 and 6. Inspection of the raw image data at
higher resolution additionally supplemented these findings
and also clearly showed that the clusters were formed on the
basis of underlying anatomical patterns (Figure 2B3). All of
these results reaffirmed that our learnt representations were
biologically meaningful and they can be used to discover
anatomical patterns in the data.

4. Conclusion

In this work we described a representation learning frame-
work that leverages the inherent expressiveness and low-
dimensionality of a deep neural network’s latent space to
discover neuroanatomical primitives both within and across
brain regions. Given the framework’s generality and its
ability to effectively model brain structure and organization,
the described methods can easily be adapted to other open
problems in comparative neuroanatomy and digital pathol-
ogy, thus providing a promising path forward in discovering
patterns in brain architecture with limited to no supervision.
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