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ABSTRACT

Methods for resolving the brain’s microstructure are rapidly
improving, allowing us to image large brain volumes at high
resolutions. As a result, the interrogation of samples spanning
multiple diversified brain regions is becoming increasingly
common. Understanding these samples often requires multi-
scale processing: segmentation of the detailed microstruc-
ture and large-scale modelling of the macrostructure. Current
brain mapping algorithms often analyze data only at a single
scale, and optimization for each scale occurs independently,
potentially limiting the consistency, performance, and inter-
pretability. In this work we introduce a deep learning frame-
work for segmentation of brain structure at multiple scales.
We leverage a modified U-Net architecture with a multi-task
learning objective and unsupervised pre-training to simulta-
neously model both the micro and macro architecture of the
brain. We successfully apply our methods to a heterogeneous,
three-dimensional, X-ray micro-CT dataset spanning multiple
regions in the mouse brain, and show that our approach con-
sistently outperforms another multi-task architecture, and is
competitive with strong single-task baselines at both scales.

Index Terms— Multi-task learning, brain mapping, seg-
mentation, neuroimaging, X-ray microtomography.

1. INTRODUCTION

Studies of brain structure and function often require us to
map out and analyse the neuroanatomy across various re-
gions of interest (ROIs) [1, 2, 3]. Consequently, methods
in neuroimaging have been making steady progress towards
pipelines that can capture multi-area and even whole-brain
volumes at high resolutions [4, 5, 6]. The analyses of such
large-scale, diversified neural datasets however, bring with
them a host of problems [7, 8, 9] such as limited or partial
views of the data, imaging and physical artifacts, as well
as the need for huge amounts of compute and automation.
Furthermore, the heterogeneity in the underlying neuronal
components within and across brain areas, in terms of both
structure and distribution, makes the characterisation of the
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individual components as well as that of the various regions
they constitute incredibly challenging.

Over the past few years, deep learning approaches have
yielded highly accurate, robust, and generalisable solutions
for problems of structural identification and characterisation
in brain mapping pipelines [10, 11, 12, 13]. However, most
of these methods focus on only single-scale structure, either
segmenting neural components and processes from high-
resolution images of relatively small brain samples [10, 11],
or parcellation of ROIs from relatively low-resolution images
of large multi-area or whole brains samples [12, 13]. The
practice of conducting these two tasks independently, how-
ever, is highly inefficient in terms of the time spent creating,
training, and deploying such models, especially as datasets
get larger. Additionally, very often the two types of segmen-
tations serve as prerequisites for one another; By resolving
neural components in a sample, microstructural segmentation
aids in the overall characterisation of different (macro) brain
areas. Likewise, by first resolving and identifying different
ROIs, macrostructural segmentation is crucial for detailing
the distributional properties of (micro) structural composi-
tions across various neurological conditions of age, health,
etc. It is, therefore, desirable to solve the two modeling tasks
simultaneously in a way that leverages structural features
present in the data across multiple spatial scales.

In this work we present a deep learning approach for
modelling neural architecture across multiple spatial scales
in a data-driven and generalizable manner, using a multi-task
learning based framework. Specifically, we leverage soft-
parameter sharing to combine a model of the macrostructure,
that is learnt by discriminating between different brain areas
in the sample [14, 15], with that of the microstructure, which
is learnt by semantically segment different neural components
present in the sample, into a single parameterized framework
trained end-to-end with a two-step, warm start procedure.
We empirically show that our proposed multi-task architec-
ture and training methodology consistently perform at the
level of, or better than strong single-task baselines at both
scales. We also address certain modifications needed to al-
low for large-scale deployment of our model, and provide
results of the same to establish our methods’ generalizability
and robustness to neural heterogeneity across a large, three-



Fig. 1. Overview of multi-task architecture for modeling neuroanatomy across spatial scales. (A) shows a 2D slice of the data with
macroscale annotations (different colours represent different ROIs). (B) depicts our proposed Double U-Net architecture; Top = Microscale
segmentation half of the network. Bottom (dotted region) = Macroscale feature extractor and projection head. The high-level, multi-scale
latent representation shared by the two halves is shown in the middle (on either side of the green arrows). To the bottom left, we show the
basic block of our U-Net, which consists of a stack of 3x3 convolutional filters, followed by a stack of 1x1 convolutional filters, and average
pooling. We also include a residual connection between the outputs of the 3x3 filters and corresponding inputs of the pooling layers. The
projection head following the classification branch comprises of a series of three convolutional layers (kernel sizes = 5x5, 4x4, 1x1), and is
denoted by the P-block. The non-linearity used throughout the entire architecture is leaky ReLU (negative slope = 0.01). (C) shows examples
of microscale annotations across our four ROIs (green = myelinated axons, red = blood vessels, yellow = cells).

dimensional imaged sample. To this end, we also demonstrate
the use of a nearest-neighbour based clean-up algorithm that
enforces local consensus amongst macroscale predictions and
boosts our performance on its segmentation significantly.

2. METHODS

Dataset and annotations. To build a model of the neu-
roanatomy at multiple scales, we work with a new, publicly
accessible three-dimensional X-ray microCT dataset [16] that
studies the Agmon-Connors slice [17]. The images span mul-
tiple ROIs from the somatosensory cortex to the ventral pos-
terior thalamic nucleus of the mouse brain (∼5.9 gigavoxels
at 1.56µm isotropic resolution), and come with annotations
of both, the micro and macrostructure, making the dataset
a good test bed for analysing multi-scale heterogeneity of
neural structure across diverse brain areas. The macroscale
annotations [18] identify six different ROIs, viz. the cortex
(CTX), striatum (STR), ventral posterior (VP), zona incerta
(ZI), hypothalamus (HYP), and white matter (WM) across
eight evenly spaced (∼78µm) slices along the depth of the
imaged dataset (Fig. 1A). The microscale annotations [19]
identify myelinated axons, blood vessels (BV), and cell bod-
ies densely labelled in blocks of 256x256 pixels across eleven
evenly spaced (∼46µm) slices along the depth of the imaged
sample (Fig. 1C) in the CTX, STR, VP, and ZI.

Given our aim of jointly modelling neural structure across
multiple spatial scales, we choose to work with data from the
four ROIs where the micro and macrostructural annotations

overlap. At the microstructural scale, we split all 256x256
annotated blocks into non-overlapping 128x128 blocks, re-
sulting in a total of 512, 128, and 64 images for training,
validation, and testing respectively. We similarly sample
128x128 images at the macrostructural scale from all slices
with area-level annotations, but restricting ourselves to only
those which are contained strictly within an ROI, resulting in
a total of 1109, 197, and 165 images for training, validation,
and testing respectively.
Double U-Net architecture. To perform both brain-area
classification and microstructural semantic segmentation si-
multaneously, we modify the classic U-Net architecture pro-
posed by Ronnerberger et al. [20] in two key ways. First, we
bolster the core U-Net (Fig. 1B - Top) with additional residual
connections [21] that allow for better propagation of signal
and gradients throughout the network and help it achieve high
levels of accuracy [22]. Next, we add a second encoder to the
core U-Net, and use it as our macroscale feature extractor or
classification branch (Fig. 1B - Bottom), thus giving our new
architecture its name – the Double U-Net.

The rationale behind our choice of architecture is intu-
itive; Features used for microstructural segmentation need
to be more sensitive and “local” as compared to those re-
quired for discriminating between entire brain areas, thereby
prompting the use of two separate encoders for the different
tasks. However, since both tasks are learnt on the same data
and would benefit from having access to features describing
different aspects of the microstructure, we allow the encoders
to share information at a sufficiently high level by concate-



nating the latent vectors of the classification branch with that
of the core Double U-Net encoder. Finally, we append the
bottleneck of the encoder used to model the macroscale neu-
roanatomy with a series of convolutional layers that we call
the projection head (i.e., P-block). The use of such layers is in
step with the current representation learning literature, having
been shown to encourage learning of better representations
which achieve higher downstream task accuracies [23].

Training procedure for multi-task learning. Our model
is trained end-to-end in two steps. First, we train the network
using only macroscale information, wherein given an input
image x, the loss function minimized is

L = `(yc, gc(x)) + λ ·MSE(x, gr(x)) (1)

Here `(·) is the cross-entropy between yc (brain area label of
x) and gc(x) (brain area predicted by the model). The second
term measures the mean squared error (MSE) between x and
the reconstructed image gr(x) produced by the segmentation
branch of Double U-Net. λ is a tunable hyper-parameter. The
network is then trained over 100 epochs in the first step, and
the model yielding the lowest validation loss is saved. Next,
we freeze the weights of the classification encoder and pro-
ceed to (re)train the core U-Net using the microscale infor-
mation over 300 epochs with the segmentation loss

L = `(ys, ŷ) (2)

where `(.) is the pixel-wise cross-entropy between ys (mi-
croscale annotation of x) and ŷ (semantically segmented out-
put given by the core branch of Double U-Net, i.e., gr).

Our proposed architecture and two-step training pro-
cedure give us the following advantages: i) We leverage
macroscale annotations to perform microscale segmentation,
thus improving performance on the latter, significantly harder
task. ii) Pre-training the model with self-supervised recon-
struction allows us to train the model in a generalizable and
robust manner with limited microscale data.

Architecture Axon BV Cell Bg Avg
SegNet 0.66 0.54 0.63 0.91 0.69
U-Net 0.78 0.60 0.70 0.93 0.75
MT U-Net 0.79 0.51 0.68 0.91 0.72
Double U-Net 0.79 0.59 0.70 0.92 0.75

Architecture STR VP CTX ZI Avg
U-Net Encoder 0.97 0.92 0.99 0.81 0.93
MT U-Net 0.90 0.86 0.96 0.64 0.84
Double U-Net 0.95 0.92 0.99 0.81 0.92

Table 1. Comparison of f1 scores across architectures for mi-
croscale (top), and macroscale (bottom) segmentation on the test set.

Clean-up algorithm to improve macroscale segmentation
performance. Even though our proposed architecture has
high macroscale prediction accuracy, we find that there often

Fig. 2. Visualization of predicted microstructural segmentations.
Top: From left to right, we show examples of i) Annotated ground
truth of microstructural labels, ii) Microstructural segmentation re-
sults produced by our model, iii) Uncertainty of the model’s predic-
tions as quantified by the difference between the top two predicted
probabilities for every pixel; Bottom: From left to right, per pixel
true positives (green), false positives (red), and false negatives (yel-
low) in the predictions for blood vessels, cells, and axons.

are small clusters throughout the output volume that are mis-
classified. We therefore enforce local spatial consensus in 3D
amongst macroscale predictions by extending a 2D k-Nearest
Neighbours (kNN) based cleanup procedure [15] (Methods,
Algorithm 1) and apply it to the predicted brain-area segmen-
tations of our model. The working of the algorithm is as fol-
lows: Assuming that the ith ROI has mi connected compo-
nents, we only maintain the set of points in the mi largest
components predicted with the label i, which we call our
“seeds”. Once we have the set of seeds for all our ROIs, we re-
label all points which are not seeds using the kNN algorithm.
The seeds act as our labels, while the features used are the
3D position vectors of the points. We find that the algorithm
correctly remaps many small previously incorrectly classified
clusters to the right ROIs, and boosts the overall macroscale
segmentation accuracy appreciably, especially in ZI.

Large-scale 3D reconstructions using the Double U-Net.
To create 3D reconstructions spanning large volumes, we de-
veloped a pipeline that allows us to deploy our models at scale
by taking as input any arbitrary 3D volume. As a first step, the
pipeline divides the input into 128x128 blocks that are com-
patible with the Double U-Net model, and feeds them to both
encoders simultaneously. We also fix the “field size”, which
is a hyper-parameter that specifies the stride of the block-
ing operation and gives us the ability to trade-off between
the speed and quality of macroscale segmentation of the fi-
nal 3D-reconstructed output. With a field size of 128, the
input volume is divided such that there is no overlap between
the 128x128 images extracted from the 3D input volume, thus
speeding up the overall algorithm. However, this also implies



Fig. 3. Visualization of pixel-level semantic segmentations and brain area predictions at scale. Top: Left - Results for large-scale microstruc-
tural segmentation of blood vessels (red), cells (green), and myelinated axons (blue). Right - Results of macrostructural segmentation (post
clean-up) on the area highlighted by the rectangle in the slice to the left. Bottom: Zoomed in versions of microscale segmentations of the
cuboids across the different ROIs, highlighted in macrostructural panel.

that each pixel in a 128x128 patch is given the exact same
class label, thus leading to very low-resolution macroscale
segmentation. On the other hand, a smaller field size increases
the resolution of the classification output at the expense of
added computation. Results of our model deployed at scale
(field size = 8) are shown in Fig. 3 and discussed in Sec. 3.

3. RESULTS & DISCUSSION

Segmentation across scales. We compared our Double U-
Net model and training methodology with both single and
multi-task architectures (Table 1). The single task baselines
used were the U-Net encoder (which acts as a discriminative
CNN) in the case of macroscale segmentation (i.e., brain-area
classification) and the SegNet [24], U-Net in the case of mi-
croscale segmentation (i.e., pixel-wise classification of neural
structure). The multi-task architecture compared against (MT
U-Net) was a fully convolutional network constructed and
trained similarly to the Y-Net [25], a hard-parameter sharing
multi-task deep network previously introduced in the context
of breast cancer diagnosis. Our methods outperformed the
MT U-Net and were competitive with single-task baselines
across both tasks and across all classes.

On the microstructural front, we found that our model
provides very high accuracy in foreground segmentation,
with average prediction of foreground pixels being ∼ 92%.
The hardest components to segment accurately were cells
and blood vessels, which are found in lesser proportions than
myelinated axons and background tissue, and also share a lot
of similarities with one another in terms of morphology, thus
making it hard for the model to distinguish from one another
(see Fig. 2). In a similar vein, on the macrostructural front,
we found that ZI was the hardest class to learn, which we
hypothesize is due to the fact that the region shares a lot of
similarity with both the VP and CTX, thus making it an easy
ROI for a deep network to misclassify.

3D Reconstructions and testing at scale. We deployed our
model at scale on a multi-area sample spanning all ROIs (Fig.
3 Left & Middle; Sample volume = 3500×520×20 = 36.4M
voxels) and to contiguous 3D volumes drawn from each of
the ROIs (Fig. 3 Right; Sample volume = 257× 257× 361 ≈
23.84M voxels). We found that we could accurately recon-
struct the microstructure, and in the case of the multi-area
sample, with the help of the kNN based clean-up, produced
highly accurate macrostructural reconstructions as well. The
highest improvement post clean-up was in ZI (accuracy im-
proved from 0.67 to 0.80), boosting our overall accuracy from
0.88 to 0.93. We demonstrate that the proposed multi-task ap-
proach can be used to effectively pull out ROIs and segment
3D data in large heterogeneous multi-region brain samples.

4. CONCLUSION & FUTURE WORK

In this work we developed a multi-task deep learning ap-
proach to model neural micro- and macrostructure simulta-
neously. Solving this task successfully requires a holistic
understanding of the data, i.e., a good model of the data’s
structural features at different scales. We empirically estab-
lish our approach by testing it out on a large 3D X-ray dataset
that spans many diverse brain regions. By providing an exam-
ple of how techniques in multi-task representation learning
can be leveraged to solve a widely pervasive problem, we
are hopeful that this study will further inspire exciting re-
search at the intersection of comparative neuroanatomy and
machine learning. Ideas from active, semi-supervised, and
self-supervised representation learning could lead to even bet-
ter models of neural architecture across neurological states.
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