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Abstract. Understanding how neural structure varies across individu-
als is critical for characterizing the effects of disease, learning, and aging
on the brain. However, disentangling the different factors that give rise to
individual variability is still an outstanding challenge. In this paper, we
introduce a deep generative modeling approach to find different modes of
variation across many individuals. Our approach starts with training a
variational autoencoder on a collection of auto-fluorescence images from
a little over 1,700 mouse brains at 25 wm resolution. We then tap into the
learned factors and validate the model’s expressiveness, via a novel bi-
directional technique that makes structured perturbations to both, the
high-dimensional inputs of the network, as well as the low-dimensional
latent variables in its bottleneck. Our results demonstrate that through
coupling generative modeling frameworks with structured perturbations,
it is possible to probe the latent space of the generative model to pro-
vide insights into the representations of brain structure formed in deep
networks.

Keywords: Variational autoencoder - Interpretable deep learning -
Brain architecture and neuroanatomy

1 Introduction

Understanding how disease, learning, or aging impact the structure of the brain
is made difficult by the fact that neural structure varies across individuals [6,15].
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Thus, there is a need for better ways to model individual variability that provide
accurate detection of structural changes when they occur. Traditional approaches
for modeling variability [5,6] require extensive domain knowledge to produce
handcrafted features e.g., volumetric covariance descriptors over pre-specified
regions of interest (ROIs) [14,20]. However, in high-resolution datasets where
micron-scale anatomical features can be resolved, it is unclear i) which features
best describe changes of interest across many brains, and ii) how to extract
these features directly from images. Thus, unsupervised data-driven solutions
for discovering variability across many brains are critical moving forward.

In this work, we introduce a deep learning model and strategy for interpreting
population-level variability in high-resolution neuroimaging data (Fig.1). Our
model is a regularized variant of the variational autoencoder (VAE) called the (-
VAE [3,8], and consists of an encoder and a decoder which work together to first
distill complex images into a low dimensional latent space and next, expand this
low-dimensional representation to generate high resolution images. Therefore,
to gain insight into what the complete model has learned from the data, we
take a bi-directional approach to characterizing how latent components are both,
impacted by perturbations to specific regions in the input, via the encoder, and
consequently impact specific regions of the generated output, via the decoder.
Our work provides new strategies for understanding how different brain regions
are mapped to latent variables within the network, an important step towards
building an interpretable deep learning model that gives insight into how changes
in different brain regions may contribute to population-level differences.

We applied this method to a collection of roughly 1,700 mouse brain images
at 25 pm resolution from different individuals in the Allen Mouse Connectivity
Atlas. By tuning the regularization strength in the -VAE, we found that it is
possible to both generate plausible brain imagery, as well as denoise images in the
dataset that are corrupted by a number of artifacts. Our investigation into the
latent space of this model also revealed a number of interesting findings; First,
we found that information contained within the latent space is often asymmetric,
with artifacts and noise being stored in one direction and biologically meaningful
variance observed across many individuals in a separate direction within the same
latent factor. Second, we found that multiple latent factors appear to generate
outputs that vary within specific brain areas and thus have localized impact on
generated outputs. Our results demonstrate that the proposed approach can be
used to systematically find latent factors that are tuned to specific ROIs, and that
generative modeling approaches can be used to reveal informative components
of individual variability.

The contributions of this paper include: (i) the creation and specification
of a B-VAE that can model high-resolution structural brain images, (ii) a bi-
directional approach for revealing relationships between brain regions and latent
factors in a deep generative network, and (iii) demonstration that structured
perturbations to both image inputs and the latent space can reveal biologically
meaningful variability.!

! Code and visualization can be found at: https://nerdslab.github.io/brainsynth/
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Fig. 1. Visualization of our bi-directional approach for analyzing variational autoen-
coders trained to gemerate brain imagery. On the left, we show a specific ROI being
manipulated in a collection of input images (A1) and how this perturbation might
result in a distinct shift in the latent representations (A2) formed from these inputs.
On the right, we show the reverse process, where we perturb the latent space (B1) and
observe the generated output images (B2).

2 Methods

2.1 Model Details

Low-dimensional models are used throughout machine learning to represent com-
plex data with only a small set of latent variables. In deep learning, a bottle-
neck, i.e., layer with small width inside the neural network, often enforces a low-
dimensional modeling of data. The VAE couples an autoencoder architecture
[9,18] with a variational objective, thus providing a probabilistic view towards
the generation of new high-dimensional data samples [10,17]. Much like regular
autoencoders, VAEs embed information from the image space X into a latent
space Z with latent dimension L via an encoder, and transform elements from
the latent space into those in the image space via a decoder. The relationship
between the encoder, decoder, and latent space can be written as:

Encoder : q(z|x)p(x) — p(z), Decoder : q(x|z)p(z) — q(X), (1)

where p(x) denotes our dataset’s distribution over the high-dimensional image
space, ¢(z|x) and ¢(x|z) are, respectively, the distribution of the estimated



260 R. Liu et al.

encoder and estimated decoder, and p(z) is the assumed prior on latent
variables?.

To train a good encoder (6) and decoder (¢), the VAE aims to maximize the
following objective:

L(0, ¢;x,2) = Eq, (a1 [log po(x|2)] — 8Dk 1.(44(2|%)||p(2))- (2)

The first term measures the likelihood of the reconstructed samples and the
second term measures the KL-divergence between the estimated posterior dis-
tribution g4(z|x) and the assumed prior distribution. When § = 1, the model
simplifies to a vanilla-VAE, whereas when (3 is a free parameter, the resulting
model is referred to as the 3-VAE [8]. Increasing the value of 5 encourages a
certain degree of clustering, whereas lowering it encourages dispersion of similar
elements in the latent space. Thus, by tuning § correctly, the model can learn
to disentangle latent factors [3,8].

In our experiments, we used a 3-VAE with a deep convolutional structure
mimicking the DC-GAN architecture [16] (Fig.1). Our encoder had seven convo-
lutional layers followed by three fully connected layers and used the ReLU acti-
vation function throughout. The same structure was mirrored for the decoder.
The learning rate and batch size were set to 2e—4 and 64 respectively, resulting
in a training time of roughly 4h on an Nvidia Titan RTX. After performing a
grid search (8=1-20, L=4-20), we selected L = 8 and § = 3 as our model
hyper-parameters since they exhibited performance that was relatively stable
(i.e., these parameters produced an inflection point in evaluation metrics). The
vanilla VAE’s performance also exhibits an inflection point at the same latent
dimension, which further confirmed that this choice holds for different amounts of
regularization. In contrast, PCA continues to decrease its approximation error
with higher dimensions; however, high-variance artifacts and other sources of
noise are very quickly incorporated into the model when the bottleneck size
increases beyond 30 dimensions.

2.2 Bi-directional Latent Space Analysis

As images in our dataset are spatially aligned to an atlas, understanding how
different regions of the pixel space are mapped to latent variables within the
network can be a critical first step in building an interpretable model that gives
insight into how different brain regions may contribute to population-level differ-
ences. To do this, we present a bi-directional approach to investigate the inter-
action between the image space and the S-VAE’s latent space (see Fig.1). By
understanding how the encoder and decoder work together to represent spatial
changes in the data, we can build a more informed look into how brain structure
can be modeled effectively within deep networks [11,21].

In one direction, we can map a latent variable’s receptive field (left, Fig. 1),
i.e. which pixels in the input space impact each latent factor’s activations. If

2 For simplicity, the prior is typically assumed to be Gaussian, z ~ N(0, I).
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Fig. 2. Fuvaluation of image synthesis and denoising performance. (A) The left half
of the image shows the average brain template and on the right, we display simpli-
fied annotations for different regions of interest, including somatosensory cortex (SSp),
hippocampal formation (HPF), striatum (STR), and parts of the thalamus (TH). (B)
Examples of corrupted images with physical sectioning and grid-like artifacts along
the top row. Below, we display the reconstructions obtained using a -VAE, VAE, and
PCA. The CW-SSIM and PCA-based FD scores for all three models are compared in
(C) and (D), respectively. (Color figure online)

changing the content of a region of the input image does not impact a specific
unit, then the manipulated region is not in the unit’s receptive field. To model
this perturbation, let x = x¢ + wpy denote the perturbed input image, where xq
is the original image, py is a region specific (spatially localized ROI) perturbation,
and w is the perturbation weight. By designing these perturbations to examine
the responses of the units to changes in specific brain regions of interest, we can
study the regional specificity of different units.

In the other direction, we can map a latent variable’s projective field (right,
Fig. 1), or the parts of space that a latent variable affects when a new image is
generated. To make this precise, let v, be a canonical basis vector with a one
in the k™ entry and zeros otherwise, ¢ denote the interpolation weight, and z
be the distribution mean. To generate an output image, we will first define the
latent representation as z = zy + cvg, and then pass this representation through
the decoder to generate an image. We can use this synthesis approach to estimate
the spatial extent of each factor’s projective field by producing outputs across a
range of different interpolation weights and then computing the variance of each
pixel in the generated images.
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3 Results

3.1 Dataset and Pre-processing

To build a generative model of brain structure, we utilized registered images from
1,723 individuals within the Allen Institute for Brain Science’s (AIBS) Mouse
Connectivity Atlas [13].? The connectivity atlas consists of 3D image volumes
acquired using serial 2-photon tomography (STP) collected from whole mouse
brains (0.35pum x 0.35 pm x 100 pm resolution, 1 TB per experiment). Rather
than using the fluorescence signal obtained from the viral tracing experiments
(green channel), we obtained the auto-fluorescence signal acquired from each of
the injected brains (red channel), which captures brain structure and informa-
tion about overall cell density and axonal projection patterns. Our models were
trained on 2D coronal sections extracted from near the middle of the brain (slice
286 out of 528) in each of the individuals in our dataset. This particular coronal
slice was selected because it reveals key brain areas, including the hippocampus
(HPF), regions of thalamus (TH), and parts of striatum (STR) (Fig.2A). The
images were then downsampled from 0.35pum to 25 um, and centre-cropped to
produce an image of size 320 x 448. In order to mitigate the effects of leakage of
fluorescence signal, we pre-processed the data by adjusting each image’s overall
brightness to the dataset’s average brightness and then set high intensity pixels
3.8 times over the average to this maximum value.

3.2 Evaluations and Comparisons

To evaluate the image generation capability of our 5-VAE model, we compared
its performance with a vanilla-VAE and PCA. We first sought to examine each
model by seeing how it performed when supplied with images containing three
different types of artifacts: (i) corrupted bright areas due to leakage from the flu-
orescence signal’s green channel, (ii) physical sectioning artifacts (missing data),
and (iii) grid artifacts from scanning (Fig. 2B, Supplementary Material Sect. 1).
In these and other examples, we found that the G-VAE did the best job of
removing artifacts from data while still preserving relevant biological variance.
The ability of the 5-VAE to reject artifacts is particularly pronounced in the
case of classes (i, ii), where both PCA and VAE fail to reject the signal leaking
into the channel of interest and cannot recover missing data. We observe that
the B-VAE tends to learn a more accurate distribution over the dataset, while
the vanilla-VAE overfits to the noise, and PCA does not deviate much from the
mean in terms of its structural details.

To quantify the quality of images generated by the different models, we
computed two metrics used to evaluate generative model outputs viz. the com-
plex wavelet structural similarity (CW-SSIM) [19] (Supplementary Material Sub-
sect. 1.1), and the PCA-based Frechet distance (PCA-FD) [7,12] (Supplemen-
tary Material Sect.1.2). When studying these metrics for different bottleneck

2 The MCA is accessible through the Allen Institute’s Python-based SDK [1] (http://
connectivity.brain-map.org/).
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sizes, we found that both for the 3-VAE and the vanilla-VAE, latent dimen-
sions in the range L =8-10 produced stable performance (where scores plateau)
before decreasing in accuracy. Analysis of the CW-SSIM scores along with visual
inspection of the generated images, revealed that PCA is unable to capture high-
dimensional textural details for low dimensions and quickly begins to represents
artifacts and noise when the size of the latent space is increased. The PCA-FD
scores, on the other hand, suggest that both VAE models capture more variability
across the data and better match the overall global distribution of population-
level variance. However, the G-VAE appears to successfully capture variability
without reconstructing artifacts due to the explicit regularization that we uti-
lized in training. These results provide initial evidence that regularization, in this
case with a B-VAE model, is helpful for striking a balance between denoising,
representing fine scale structures, and capturing the data’s global distributional
properties.

3.3 Interpreting the Latent Factors

After confirming that our model can generate high quality images and denoise
data, we next explored its interpretability with the bi-directional analysis method
described in Sect. 2.2 (Fig. 1). We first examined the projective field of each latent
factor. In this case, our goal was to produce three heatmaps to reveal which parts
of the image space are impacted by changing a specific latent factor with either
a (i) a small negative, (ii) small positive, or (iii) a large interpolation weight.
Sorting the interpolations in this way allows us to generate three images that
can be stacked into different channels of a color image to visualize the impact
of all three types of perturbations on the image domain jointly (Fig.3A). Upon
further inspection of the images that resulted from this analysis (Supplemen-
tary Material Sect.4), we observed that localized noise artifacts (type i) were
synthesized at the extrema of the interpolation space. Interestingly, we observed
asymmetries in the representations: Type (i) artifacts, while not usually recov-
ered by the decoder, were more likely recapitulated when moving far into the
space of negative interpolation weights (Supplementary Material Sect. 4). In con-
trast, small interpolation weights appeared to highlight biologically meaningful
variance that aligns with key ROIs including the barrel fields of somatosensory
cortex, hippocampus, and retrosplenial areas in cortex. These results provide ini-
tial evidence that VAE models can be used to decompose biological variability
in complex data, even in the presence of different types of noise and artifacts.
We next asked whether we could understand properties about each unit’s
receptive field. To do so, we selected a set of high-quality images without obvious
artifacts, applied masks to remove all content from different ROIs, and then
modulated their intensity with perturbation weights w. We fed these perturbed
images into the encoder (Supplementary Material Sect. 2), computed the latent
representations, and fit a Gaussian to the resulting latent codes across all image
examples (n = 832) (Fig.3C, Supplementary Material Sect.3). The results of
this perturbation analysis revealed multiple units that are strongly modulated by
changes in some brain regions but not others, and that exhibit localized receptive
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Fig. 3. Model interpretation. (A) A visualization of how changing a latent factor
impacts the generated output images. Here, cyan and magenta represent the pixel
level variance in images generated from interpolation weights in the quartile above and
below average, respectively, and yellow represents pixels that vary with high interpo-
lation weights. For all factors, the interpolation weight is varied from [—7,7] with a
step size of 0.005. (B) For each ROI, we compute the KL-divergence between each fac-
tor’s response to extreme ROI specific perturbations (blue is low impact, yellow is high
impact). (C) We show how perturbing the image brightness in HPF region impacts
the activation distribution for two factors (F1, F5). (D) The covariance of the impact
matrix in (B) measures the similarity between how different latent variables impact
specific ROIs. (E) The disentanglement score for PCA, the VAE, and 3-VAE provide
a measure of how uncorrelated factors are in terms of their impact on specific brain
regions. (Color figure online)

fields. We found that perturbations to the hippocampus (HPF) impacted almost
all of the latent variables, and striatum also has wide reaching impacts. This
seems to align with the fact that variability in these areas is more complex and
thus it is necessary to encode this variance over multiple factors.

The impact of perturbing a specific ROI on a latent factor could be further
quantified by computing the KL-divergence between the activation distributions
for two extreme perturbations (strong negative or positive scaling of missing
data in ROI). We computed this impact score for all 6 brain ROIs and all 8
latent factors in the trained network (displayed as a 6 x 8 matrix in Fig. 3B,
further visualized in Fig.3C). This matrix quantifies the impact that missing
information from a ROI has on activations in each latent variable in the model.
One interesting result from our analysis is that, in some cases, the receptive
field and projective field may not be spatially aligned (see Factor 8, HPF). Our
results reveal that receptive and projective fields can be asymmetric, and thus it
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is critical to map input-output relationships from the image space to the latent
space and back again.

To quantify the separability or disentanglement of a model’s latent space
relative to known brain structures, we examined whether regional perturba-
tions impact different factors in unique ways. We thus computed the covariance
between each latent factor’s impact scores to reveal their similarity and defined
the disentanglement score s as a measure of how far this matrix is from diagonal,
where s = Tr(A)/(32;; Aij —Tr(A)) and A denotes the covariance matrix of
interest. A comparison between the 5-VAE, VAE, and PCA in terms of their
scores revealed that the 8-VAE achieved the best disentanglement among three
models (Fig. 3E). This provides evidence that the 3-VAE model can capture vari-
ance across a few key brain areas while also providing good separation across
different latent factors. In contrast, the vanilla-VAE appears to have factors with
much lower disentanglement. PCA on the other hand, provides better disentan-
glement due to its orthogonality constraints but still doesn’t separate brain areas
as well as the 5-VAE model.

4 Discussion

This work presents a novel data-driven approach for learning population-level
differences across high-resolution microscopy images collected from many indi-
viduals. Our key contribution is a new method for interpreting factors that drive
variance in a deep generative model for brain image synthesis.

In our current study, we used a S-VAE model because of its simplicity and
flexibility; however, there are other interpretable VAE variants that have been
proposed to facilitate disentanglement [3,4,21] that we could apply our approach
to. As our interpretability approach is quite general, one could also potentially
use it to visualize and interpret latent representations and/or biomarkers found
in other instances of representation learning in neuroscience [2] and medical
imaging [15]. Moving forward, interpretability approaches that can probe and
model collective responses across many units will be important for revealing
complex interactions between features, as well as inspiring new approaches for
modeling variability in large high-dimensional datasets.
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